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The problem of seepage flow through a dam is free boundary problem that is more conveniently solved by a
meshless method than a mesh-based method such as finite element method (FEM) and finite difference
method (FDM). This paper presents method of fundamental solutions, which is one kind of meshless methods,
to solve a dam problem using the fundamental solution to the Laplace's equation. Solutions on free boundary
are determined by iteration and cubic spline interpolation. The numerical solutions then are compared with
the boundary element method (BEM), FDM and FEM to display the performance of present method.
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1. Introduction

The two-dimensional steady state saturated isotropic seepage flow
with free boundary is described by the Laplace equation necessary
boundary conditions. Previous works, the methods are to solve the
unconfined seepage problem; it can be classified as analytical and
numerical methods. The analytical solution can be obtained by using
the theory of analytical function for liner ordinary differential
equations [1,2]. It is only valid for two-dimensional problem but it
cannot be used in case of complex geometrics and three-dimensional
problems.

Conventionally numerical methods used to solve such problem
included FDM [3] and FEM [4–8]. These methods are all mesh-
dependent methods because they require boundary-fitted mesh
generation. Alternative numerical methods include BEM [9] and
MFS [10,11]. Both methods do not require boundary-fitted mesh,
which results in considerable simplification of the preprocessing step.
MFS has additional advantages over BEM in that it requires only
boundary node placement instead of boundary mesh generation, and
it does not require evaluation of near singular integrals [12]. The basic
idea of MFS is to approximate the solution by forming a linear
combination of known fundamental solutions with sources located
outside the problem domain.

Previously, Chantasiriwan [13] investigated numerically both one-
and two-phase Stefan problem subject to specification of boundary
temperature, heat flux or energy using MFS. The numerically obtained
results showed good agreement with the available analytical solutions.
Kolodziej et al. [11] implemented theMFS with radial basis functions to
solve a heat source problem for arbitrary domains, the numerical results
showed that theMFS is an accurate and reliable numerical technique for
the solution of the inverse heat source problem.

In order to study seepage problem, accurately defining the position
of free boundary is very important and necessary. In the past, many
researchers utilized several methods to determine the location of free
boundary such as Aitchison [3], andWestbrook [4] used FDM and FEM
respectively, to solve the position of the free boundary, respectively.
The conventional BEM was then used to study the seepage flow
through the porous media by Liggett and Liu [14], and also BEM using
hypersingular equations was proposed by Chen et al. [15].

In this paper, free boundary is regarded as amoving boundarywith
the over-specified boundary conditions, and MFS is used to find the
location of free boundary. The numerical results of present method
are also compared with FDM, FEM, and BEM solutions.
2. Mathematical formulations

The seepage problem of water flow through a saturated porous
medium dam with tail water is shown in Fig. 1. The free boundary is
defined as the boundary line or interface between the saturated-wet
and dry soils. In order to reduce complexity of the phenomena to
analyze flow field in the soil, several assumptions are introduced as
following:

(1) Soil in the flow field is homogeneous and isotropic.
(2) Capillary and evaporation effects are neglected.
(3) Two dimensional steady-state flow.
(4) The flow follows Darcy's law.
(5) Hydraulic conductivity or permeability of the soil is constant

isotropic seepage flow.
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Nomenclatures

n direction cosine (–)
G fundamental solutions (m)
p pressure (N/m2)
u component of velocity in x direction (m/s)
v component of velocity in y direction (m/s)
x, y cartesian coordinates

Greek letters
γ specific weight (N/m2)
φ velocity potential (m2/s)
ψ stream function (m2/s)

Subscripts
i, j index

Abbreviations
BEM boundary element method
FDM finite difference method
FEM finite element method
MFS method of fundamental solutions
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The governing equation of two-dimensional steady-state isotropic
seepage in terms of the velocity potential and the streamline function
can be described by the Laplace's equation as

∇2φ = 0 ð1Þ

∇2ψ = 0: ð2Þ

It is found that they are orthogonal to each other [16]. The
component u-velocity and v-velocity in x- and y-direction, respec-
tively, can be expressed as

u = −∂φ
∂x ; v = −∂φ

∂y : ð3Þ

The velocity potential function or piezometric head can bewritten as

φ = y +
p
γ

ð4Þ
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Fig. 1. Flow through a 2D rectangular dam.
where y is the position, p is the pressure, and γis the specific gravity
of fluid [16]. Therefore, the boundary conditions are presented in
Fig. 1 as

φ = y1 on a−e ð5Þ

φ = y2 on b−c ð6Þ

and the remaining free boundary conditions

φ = y on c−d and d−e ð7Þ

∂φ
∂n = 0 on d−e: ð8Þ

Boundary conditions at the free boundary are over-specified. In the
following section, this boundary will be determined by using MFS
with the initial guess of free boundary.

3. Numerical methods

3.1. The method of fundamental solutions

For basic idea of MFS is to express φ as linear combination of
fundamental solutions [10]. Consider Fig. 1, let Ω is seepage region
that be a bounded, simply connected domain in R2 with boundary Γ.
On boundary b–c, c–d, and a–e are Dirichet boundary, and boundary
a–b is Neumann boundary. Boundary d–e is combined Dirichet and
Neumann boundary, or is called as Robin boundary. For these
boundaries can generally expressed as

φ = f x; yð Þ for x; yð Þ on Γ1 ð9Þ

nx
∂φ
∂x + ny

∂φ
∂y = x; yð Þ for x; yð Þ on Γ2 ð10Þ

where direction cosine nx and ny are x-, and y-components,
respectively, of the outward normal unit vector. The fundamental
solution satisfies the solution of Laplace's equation as

G Pi;Qj

� �
=

1
2π

log rij Pi∈Ω; ;Qj;∈ ŜÞ
�

ð11Þ

where

rij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−ξj

� �2
+ yi−ηj

� �2
r

ð12Þ
Fig. 2. The distributions of collocation points (white circles), source points (white
squares), and internal domain points (white diamonds).



x1

Fig. 4. Initial model: boundary nodes (black circles), initial free boundary nodes (white
circles), and source points (white squares).
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is a Euclidian distance between collocation point and source point,
and (ξj, ηj) are coordinates of source points that located outside the
domain shown in Fig. 2.

Since seepage problem included free boundary must be solved
iteratively. Suppose that after the nth iteration, value of φi

(n) are
known, values of φi

(n+1) at (n+1)th iteration are to be determined.
Therefore, the approximate solution of Eq. (1) can be represented by a
linear combination of fundamental solution as

φ n+1ð Þ
i = ∑

N

j=1
a n+1ð Þ
j G Pi;Qj

� �
Qj∈ Ŝ ð13Þ

where N be number of nodes in boundary domain. Substituting
Eq. (13) into Eqs. (9) and (10) results in a system of equations:

∑
N

j=1
a n+1ð Þ
j G Pi;Qj

� �
= f xi; yið Þ i = 1;2; :::;N1ð Þ ð14Þ

∑
N

j=1
a n+1ð Þ
j nx

∂
∂xG Pi;Qj

� �
+ ny

∂
∂yG Pi;Qj

� �� �
= g xi; yið Þ ð15Þ

where N1 and N2 are the number of nodes on boundary Γ1and Γ2,
respectively, and N=N1+N2. Hence, aj

(n+1) can be determined.
Direction cosine nx and ny in Eq. (10) or Eq. (15) on free boundary can
be expressed as

nx = cosα ð16Þ

ny = cos β ð17Þ

respectively, and further details shown in Fig. 3.
Therefore, each of iteration, direction cosines of free boundary

nodes are to be determined by using boundary nodes and central
boundary nodes as displayed in Fig. 3. For central boundary nodes are
interpolated by cubic spline interpolation (CBI) [17,18], when x-
coordinate of those nodes are specifically known. Free boundary is
also obtained by this interpolation technique. CBI is chosen because it
uses third degree polynomials to connect the data points which often
results in strikingly smooth curve fitting. For separation point is
shown in Fig. 1, it is calculated by second degree polynomials after
free boundary obtained for each of iteration.

Since the free boundary has over specified boundary conditions, it
will be determined iteratively by using initial guess for free boundary
as shown in Fig. 4. Additionally, Fig. 4 shows positions of source points
in the space coordinates. It can be seen that the number of source
n̂

nx = cos α

y

ny = cos βS

αβ

x

Fig. 3. Direction cosine, and locations of boundary nodes (black circles) and central
boundary nodes (white circles).
points is the number of boundary nodes (N). The N source points have
the space coordinates as

ξi;ηið Þ = xi; yið Þ + BF⋅ nx;i;ny;i

� �
ð18Þ

where BF is body factor constant, for this paper, let BF is equal to 1.0 to
determine coordinate of source points. Each of source points is also
located on an imaginary boundary, which is larger than the actual
boundary. The free boundary location is determined by checking the
criterion of convergence as following

ε =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i=1
φn+1
i −φn

i

� �2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i=1
φn
i

� �2s ð19Þ

where the symbol m is the total number of boundary nodes on the
moving surface, and the allowable tolerance used in this paper is 10−4

as same as Chen et al. [5]. The flowchart of iteration procedure is also
displayed in Fig. 5.

3.2. Finite element method

A standard finite element method is given in this section for two-
dimensional seepage flow domain Ω. The weak form of Eq. (1) is
obtained by multiply both sides of this equation by arbitrary
continuous function φ and integrating over the domain Ω, applying
the divergence theorem [5–8] as

∫
Ω

∇φð ÞT∇φdΩ = 0: ð20Þ

It is noted that the weak form is nonlinear since the flow domainΩ
is unknown such as the location of free boundary and the separation
point are also unknown, although Eq. (20) is apparently linear in φ, it
will be determined iteratively by using initial guess for free boundary.
In finite element method the dependent variable, the velocity
potential φ, is approximated by

φ = ∑
n

i=1
φiNi ð21Þ
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Fig. 5. Flow chart of iteration procedure.
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where usually the φi are the nodal values of φ, Ni are appropriate
shape functions (interpolation function) defined piecewise element
by element, and n is the total number of nodes. The linear algebraic
equation system is derived by Galerkin's method as

Kijφj = 0 i; j = 1;2; :::;nð Þ ð22Þ

where n is the number of nodes of finite element mesh and Kij is a
global matrix coefficient given by

Kij = ∫
Ω

∂Ni

∂xk
∂Nj

∂xl
dΩ i; j = 1;2; :::;nð Þ k; l = 1;2;3ð Þ: ð23Þ

3.3. Boundary element method

The essence of a boundary element method implemented this
problem is to transform the variables from area variables to boundary
ones. The simplest approach is to use Green's second identity. Here
one can also introduce the idea of multiplying Eq. (1) by a
fundamental solution of Lapalce's equation G. Applying Green's
second identity to φ and G results in the following transformation
from an area integral dΩ to a line integral dΓ [9,15] as

∫
Ω

G∇2φ−φ∇2G
� �

dΩ = ∫
Γ

G
∂φ
∂n−φ

∂G
∂n

	 

dΓ ð24Þ

where n is the unit outward normal and ∂/∂n is the derivative in the
direction of the outward normal. Usingweighted residual technique, a
residual R function is set to be a fundamental solution G, Then Eq. (24)
is obtained as

φ = ∫
Γ

G
∂φ
∂n dΓ−∫

Γ

φ
∂G
∂n dΓ: ð25Þ

Discretizing the boundary Γ into Ne element, it is obtained as

φi = ∑
Ne

k=1
Ik ð26Þ

Ik = ∫
Γk

∂φ
∂n G s; xi; yið Þ−φ sð Þ ∂G∂n s; xi; yið Þ

� �
J sð Þds ð27Þ

where Γk is a boundary element at k and Ne is a total boundary
element. The velocity potential function φ can be approximated by
interpolation function Nl as following:

φ sð Þ = ∑
m

i=1
Nl sð Þφk;l ð28Þ

where it is should be m=3 for quadratic element.

4. Analytical method

In this case, the analytical solution of the free boundary can be
given in following form [1,2]

x = x1−∫χ

0

ζ sin2χ
� �

sin χdχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α sin2χ
� �

1−β sin2χ
� �q ð29Þ

y = y1 + y2 + ∫χ

0

ζ cos2χ
� �

sin χdχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α sin2χ
� �

1−β sin2χ
� �q ð30Þ

0≤χ≤π=2 ð31Þ

where ζ(χ) is the complete elliptic integral of the first kind; α, β∈(0, 1)
are parameters that define problem; the domain parameter of y1, y2 and
x1 are defined as

y1 = ∫π=2

0

ζ α + β−αð Þsin2χ
� �

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−α + 1−βð Þsin2χ

q ð32Þ

y2 =
ffiffiffiffi
α

p
∫π=2

0

ζ α sin2χ
� �

sin χdχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α sin2χ
� �

β−α sin2χ
� �q ð33Þ

x1 = ∫π=2

0

ζ α + 1−βð Þ sin2χ
� �

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α− β−αð Þ sin2χ

q : ð34Þ

The length of the seepage surface is obtained as

y0 = ∫π=2

0

ζ cos2χ
� �

sinχ cos χdχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1−αð Þ sin2χ
� �

⋅ 1− 1−βð Þ sin2χ
� �q ð35Þ

5. Results and discussion

In the following, the proposed numerical technique MFS is used to
solve a two-dimensional unconfined seepage flow problems of
rectangular dam with tail water.
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Table 2
The separation point calculated by different methods.

Reference Height (m)

Present MFS 12.88
FDM [3] 12.79
FEM [4] Not shown
BEM [15] 12.68

(a) (c) 
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5.1. Numerical validation

In order to verify effectiveness of MFS, there two test problems of
rectangular dam with tail water that are considered. The MFS results
should be compared with analytical solution in first test, and
conventional methods as FDM, FEM and BEM solutions in second test.

5.1.1. First test problem
In analytical method, after taking α=0.3, β=0.9 and performing

numerical integration, the physical parameters of the problem:
y1=6.3014m, y2=1.2359m, x1=6.1592m and the length of seepage
face y0=1.2868m. The analytical results of the coordinates of the free
boundary nodes are calculated by Eqs. (29) and (30). Fig. 6 shows the
present simulated MFS results. The solutions obtained agree closely
with the analytical results.

5.1.2. Second test problem
Consider seepage problem where the upper hydraulic head

y1=24 m, the lower hydraulic head y2=4 m, and the width of dam
x1=16 m. There are 70 nodes uniformly distributed in the initial
guess domainwith grid spacing of 1.0 and separation point is assumed
at y=14 m. The present numerical solutions of free boundary are
then compared with those of Aitchison [3], Westbrook [4], and Chen
et al. [15] as shown Table 1. The number of iterations of present
method is obtained by 22. It can be seen that that MFS is capable to
calculate free boundary agree with other methods.

The separation point at x=16.0m is interesting and important
since a singular point due to the intersection of the free boundary and
seepage surface. In addition, this point presents an important role in
term of dam stability. It is predicted by MFS and compared with other
methods as shown Table 2.
Table 1
Free boundary obtained by different methods.

x (m) MFS FDM [3] FEM [4] BEM [15]

1 23.75 23.74 23.64 23.74
2 23.41 23.41 23.32 23.40
3 23.03 23.02 23.06 23.01
4 22.59 22.59 22.52 22.52
5 22.12 22.12 22.12 22.09
6 21.60 21.60 21.55 21.57
7 21.04 21.04 21.07 21.00
8 20.44 20.43 20.36 20.39
9 19.79 19.78 19.81 19.73
10 19.08 19.08 19.07 19.02
11 18.32 18.31 18.26 18.24
12 17.50 17.48 17.45 17.39
13 16.59 16.57 16.45 16.45
14 15.58 15.54 15.51 15.39
15 14.40 14.39 14.33 14.09
16 12.88 12.79 Not shown 12.68
5.2. Flow analysis

As in two previous test problems, the rectangular dam is
homogeneous and isotropic. Water flows through the dam from a
reservoir on the upstream side to the downstream side as shown in
Fig. 4. Fluid particles move along a streamline always in the same
direction from the upper to the lower reservoir that is the direction of
x increasing in Fig. 7. Thus the fluid velocity is positive in the flow
region Ω and the velocity potential φ is decreased along any
streamline as display in Fig. 7. The velocity field in Fig. 7(c) shows
zero normal component on the free boundary. The velocity potential
function contours in Fig. 7(d) are normal to the free boundary and the
bottom boundary, which are stream lines.

6. Conclusion

In this paper, it is shown how to use MFS to solve the problem of
two-dimensional steady-state isotropic seepage flow. A generalized
mathematical model and an effective calculation procedure are
proposed. For two test problems indicate the successful implemen-
tation of numerical procedure. The free boundary and separation
point can be obtained. Although it is only considered solving dam
problem,MFS can be applied tomore general free boundary problems.
(b) (d) 

Fig. 7. Flow distribution: (a) converged shape and domain points (white diamonds);
(b) velocity field in the converged shape; (c) the velocity potential distribution; and
(d) the stream function distribution.
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